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Abstract. Dense hydrogen can be viewed as the superimposition of two standard many-body
problems, namely those of the interacting electron gas and the corresponding interacting proton
gas, taken at equal average densities. The known low-density instability towards proton pairing
appears to be preserved to aboutrs = 1.32 as inferred from a determination of electronic total
energies. Prior to this in density, a transition to a metallic state occurs in which proton pairing
persists. In this band-overlap state, electron pairing via a phonon and electronic mechanism
is predicted to occur with a transition temperature higher than that found for the eventual
monatomic state. This phase is itself preceded by one where electronic symmetry is broken at
low temperatures resulting in a state of spontaneous polarization.

1. Introduction

A formal statement of the problem represented by dense hydrogen can be introduced by
starting with the canonical fermion problem (figure 1, top panel) ofN (∼1023) electrons,
charge−e, massme, coordinates{rei}, and spins{ŝei} in a compensating background (charge
density eρ̄ = e(N/V ) which for volumeV is described by the familiar non-relativistic
Hamiltonian:

Ĥe =
N∑
i=1

(−h̄2/2me)∇2
ei +

1

2

∫
V

dr
∫
V

dr′ φc(|r − r̄ ′|){ρ̂(2)ee (r, r
′)− 2ρ̄ρ̂(1)e (r)+ ρ̄2}.

(1)

Here the first term is the total kinetic energy,T̂e, and

ρ̂(1)e (r) =
N∑
i=1

δ(r − rei ) (2)

is the one-electron density operator; also appearing in (1) is the two-particle density operator

ρ̂(2)ee (r) = ρ̂(1)e (r)ρ̂(1)e (r̄ ′)− δ(r − r′)ρ̂(1)e (r). (3)

In specifying the average background density it is convenient to introduce the Wigner–
Seitz radius (or RPA parameter)rs :

4π

3
r3
s a

3
0 = (1/ρ̄)

where the atomic lengtha0 = h̄2/mee
2 is also introduced by the fundamental constants

appearing in (1). This standard measurers will also be used to specify the density of dense
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Figure 1. Top panel: an assembly ofN interacting electrons, coordinatesrei , in a macroscopic
volumeV , with a compensating background of charge densitye(N/V ) = eρ̄. Middle panel: a
similar assembly ofN interacting protons, coordinatesrpi , in the same volumeV , now with a
compensating background of charge density−e(N/V ) = −eρ̄. Bottom panel: electron-gas and
proton-gas problems (from the top and middle panels) superimposed in identical volumesV .
This construct establishes the hydrogen problem as the interacting electron-gas and proton-gas
problems, and mutual interactions between the two.

hydrogen in the description to follow. For values of the density typified by the choice
rs ∼ 1, it is equally familiar that the non-pairing ground states of (1) are characterized by
a homogeneous paramagnetic Fermi liquid, i.e. states of continuous symmetry for which

ρ(1)e (r) = 〈ρ̂(1)e (r)〉 = constant= ρ̄
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and

〈ρ̂(2)e (r, r′)〉 = 〈ρ̂(1)e (r)〉〈ρ̂(1)e (r′)〉g(2)(r, r′) = (ρ̄)2g(2)ee (|r − r̄ ′|)
whereg(2) is now the radial distribution function. Correspondingly

E = 〈T̂e〉0+ N
2

∫
V

dr ρ̄φc(r)(g
(2)
ee (r)− 1)

is the ground-state energy and it can usually be written in the form

(E/N) =
{

2.21

r2
s

− 0.916

rs
+ Ec(rs)

}(
e2

2a0

)
where the terms represent kinetic, exchange and correlation energies, per electron.

We may observe that if the densitiesρ̄ are reduced from those equivalent tors ∼ 1 by
a factor of 106 (or equivalently if the mass of the electron is increased to 102me) then the
states of (1) are those of a broken symmetry, a crystal (an example being a Wigner crystal).
Then

〈ρ̂(1)e (r)〉 = 〈ρ̂(1)(r + R̄)〉
where the{R} are sites of a lattice for which

〈ρ̂(2)ee (r +R, r′ +R)〉 = 〈ρ̂(2)ee (r, r
′)〉 = 〈ρ̂(1)e (r)〉〈ρ̂(1)e (r′)〉g(2)ee (r, r̄

′).

The spin character of this state may be antiferromagnetic, depending on the choice of lattice.
Next, consider a second fermion problem, almost identical in physical character to the

electron problem just introduced. In the same volumeV (figure 1, middle panel), placeN
protons, charge+e, massmp (=1836me), coordinates{rpi}, and spins{ŝpi}. Again supply
a compensating background but now with charge density−eρ̄ = −e(N/V ). Then the
Hamiltonian for this system is

Ĥp =
N∑
i=1

(−h̄2/2mp)∇2
pi +

1

2

∫
V

dr
∫
V

dr′ φc(|r − r̄ ′|){ρ̂(2)pp (r, r
′)− 2ρ̄ρ̂(1)p (r)+ ρ̄2} (4)

whereρ̂(1)p andρ̂(2)pp are the proton equivalents of (2) and (3). It is obvious that the elementary
length implied by (4) is now(me/mp)a0. For this reason it is clear that if̄ρ is fixed by the
electron problem at values leading to an electronic Fermi liquid, then the ground states of
(4) are very far into the Wigner-crystal regime.

With these preliminaries, the fundamental problem underlying the physics of dense
hydrogen can now be set down. Before doing so, two further remarks are in order on the
issue of pairing states. The first is that, though free of intermediaries (for example, phonons),
the question of possible ground states of continuous symmetry of (1) but exhibiting off-
diagonal long-range-order, and a pairing character, has arisen [1]. The second is that in
a completely analogous way it can be asked whether the crystalline phases of (1) (and
even of (4)) are necessarily those of a Bravais lattice, or whether, for example crystalline
structures with paired bases might also be preferred [2]. Given these hints of intrinsic
pairing structures we now imagine superimposing the problems represented by (1) and (4)
(figure 1, bottom panel); then the ensuing problem is described by the Hamiltonian

Ĥ = Ĥe+ Ĥp−
∫
V

dr
∫
V

dr′ φc(|r − r′|)(ρ̂(1)e (r)− ρ̄)(ρ̂(1)p (r′)− ρ̄) (5)

and since the respective backgrounds in (1) and (4) exactly cancel it is also clear that this
is entirely equivalent to

Ĥ =
∑
α

{
T̂α + 1

2

∑
α′
(−1)α+α

′
∫
V

dr
∫
V

dr′ φc(|r − r′|)ρ̂(2)αα′(r, r′)
}

(6)
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whereα = 1, 2 denote electrons (e) and protons (p) respectively, and

ρ̂
(2)
12 (r, r

′) = ρ̂(2)ep (r, r
′) = ρ̂(1)e (r)ρ̂(1)p (r′).

Note that as with (1) and (4), the fundamental Hamiltonian for hydrogen, (4) or (5), has
considerable symmetry.

The problems defined either by (5) or (6) constitute the dual fermion assembly
represented by condensed phases of hydrogen. With the replacementmp → md (the mass
of the deuteron) in (4) and a fundamental change in quantum statistics, the Hamiltonian

Ĥ = Ĥe+ Ĥd−
∫
V

dr
∫
V

dr′ φc(|r − r′|)(ρ̂(1)e (r)− ρ̄)(ρ̂(1)d (r′)− ρ̄) (7)

defines the corresponding fermion–boson assembly represented by the condensed phases
of deuterium. Dual fermion problems arise in a completely different context, for example
in nuclear physics, where the four-particle problem represented by the alpha particle (two
protons and two neutrons) has a notable stability, which finds a parallel in the two-electron–
two-proton system emerging at low densities as the hydrogen molecule. The primary task
is now evident: it is to start with (5), (6) or (7), and to account for, and if possible predict,
the equilibrium phase structure of hydrogen as a function ofrs andT . It is also to account
for the response properties (e.g. static and dynamic conductivities) of these phases.

Figure 2. An approximate phase diagram of dense hydrogen. Phase I (the low-pressure phase)
is crystalline with proton and electron pairs persisting in rotational states. In phase II there
is incomplete rotation, or wide-angle libration. Phase III is characterized by spontaneous
polarization or charge-density-wave behaviour, but again is accompanied by wide-angle libration.
In phase IV (again, the proton dynamics is important) a band-overlap transition appears to take
place. The phase is semi-metallic and probably also superconducting. Note the break in the
temperature scale. The upper boundaries in bothT andP are currently uncertain.
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2. Near ground states of dense hydrogen

Dense phases of hydrogen have been probed experimentally under conditions corresponding
to ρ̄/ρ̄0 ∼ 10 and temperatures currently reaching as high asT ∼ 3000 K. For these
conditions, significant conductivity is reported [3], in some contrast to the situation near the
ground state where to date hydrogen remains resolutely insulating to pressures reported to be
as high as 340 GPa [4]. Even in the high-temperature phase, probably a translational fluid
(ρ(1)p (r) = 〈ρ̂(1)p (r)〉 = ρ̄), there is evidence that the protons remain substantially paired;
i.e. in

ρ(2)pp (r, r
′) = (ρ̄)2g(2)pp (|r − r|)

the pair distributiong(2)pp (|r − r′|) is expected to be characteristic of a diatomic fluid. (It
is the distribution functions,g(2)pp , and their extensions at higher order that have physical
significance, and not the low-density constructs H,H+,H2,H+2 , etc, which have no precise
definition at densities characterized byrs ∼1.) At lower temperatures, where the physical
properties of dense hydrogen have mainly been elucidated by diamond anvil experiments,
figure 2 summarizes the phase diagram with phase I (also called the low-pressure phase)
corresponding to a state with proton pairs occupying crystalline sites, but also persisting
in states where angular momentum is a quite good quantum number. In crossing into
phase II (also referred to as the broken-symmetry phase) the latter is no longer the case,
and in classical terms the proton pairs execute wide-angle libration about the time-average
crystalline sites. To reach this phase, considerable compression is required (as can be seen
from figure 2), yet as noted the state is still insulating. It also remains so as the boundary
into phase III (or the H-A phase) is crossed. The chief characteristic of this phase is that on
entering it there is (a) a notable and mass-dependentdrop in the principal vibron frequency,
and (b) an even more striking onset of infrared activity. Both phenomena can be driven away
by sufficient increase in temperature; the onset density of both also appears to be largely
mass independent. These observations already begin to argue for a substantially electronic
explanation for the new ordering represented by phase III even though it is manifestly
obvious that the proton (or deuteron) dynamics is playing an important role. For all three
phases, proton pairing appears secure, as it does for a possible phase IV (to be discussed
below); it is suggested that this is characterized by a band-overlap transition into a semi-
metallic state. Again, electronic ordering is anticipated at low temperatures: specifically
electron pairing and the onset of superconductivity [5].

In treating (5) or (6) (or indeed (7)) from the standpoint of a partition function

Z = Tr e−βĤ

the approaches divide simply into those which invoke a standard adiabatic separation of
electronic and protonic timescales, and those which do not. Because of the simplicity and
symmetry ofĤ for the hydrogen problem, considerable progress can be made with the
latter when the partition function is established as a coherent-state functional integral. The
third term in (5) is then crucial in establishing pairing fields for both protons and electrons
in states of both continuous symmetry and crystalline symmetry [6]. Electrons and protons
can also be treated on a completely equal footing by quantum Monte Carlo methods (Natoli
et al [7]).

Within the Born–Oppenheimer approximation the low-temperature phases of hydrogen
present an average crystalline arrangement on proton timescales, but on electronic timescales
they also present a problem considerably more complex than that normally encountered in
addressing the electronic structure of a solid disturbed by ordinary phonons. For example
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in phase I the motion of proton pairs is fully rotational, while in phase II it is librational,
with large-angle excursions as noted. Incorporating these effects into a self-consistent
single-particle description (such as a band-structure) remains a largely unsolved problem.
Nevertheless the single-particle picture for the electronic structure of dense hydrogen has
mainly dominated the interpretation of much of the data accumulated on dense hydrogen.
And within the single-particle view it is the band-structure model, involving the assumption
of infinitely massive protons, that has likewise dominated.

For fixed proton positions, the many-electron problem can be reduced to an equivalent
single-particle description embodied in the formally exact Kohn–Sham equation which for
a periodic system takes the form

(T̂ + V̂ + V̂xc)ψnk(r) = εnkψnk(r) (8)

with the single-particle statesψnk possessing the Bloch character for bandn and crystal
momentumk. In (8), V̂ includes the interactions with protons and the Hartree contributions
from other electrons. As in its application to other systems, the Kohn–Sham equation
requires a stipulation of the exchange–correlation potential,V̂xc, a functional of the one-
electron (electronic) densityρ(1)e (r). At densitiesρ̄ typified by rs ' 1.6, the electronic
energy bands resulting from solutions of the Kohn–Sham equation display a notable
similarity to moderately distorted free-electron bands, in spite of the fact that the electronic
densityρ(1)e (r) is extremely inhomogeneous. Given this, it is straightforward to argue [8]
from the necessity to prevent band overlap in the retention of an overall insulating state
that for the common structures (hexagonal and related) the molecular axes should be neither
parallel to thec-axis, nor to thea- andb-axes. Lowering of energy can also be predicted
to occur [9] for orthorhombic rather than hexagonal structures. Thus tilted arrangements
in orthorhombic cells would seem to be preferred, as confirmed originally by Kaxiras and
Broughton [10] and by many ensuing studies [11], but mainly within the local density
approximation to exchange–correlation contributions.

These show that to quite high densities hydrogen strongly retains its proton pairing, and
that among the crystal classes the orthorhombic structure is indeed also strongly indicated
(this apparently holding true when the proton dynamics is reintroduced). Within the
orthorhombic structures it is thecmca, cmc21, andc2/m forms that also seem most favoured
[12] at least within limited relaxation of the corresponding orthorhombic cells. These have
bases of two sets of proton pairs, and a remarkable feature of the arrangement is that, at
ninefold compression and above, the twin sets of basis pairs can be identified with sublattices
which can develop opposing spontaneous polarization. That this might be expected can
be attributed to the fact that in terms of the average linear dipole polarizability of the
highly stable (two-electron, two-proton) problem that we normally identify as the hydrogen
molecule, the relative volumetric compression achievable in experiment is unusually high
[13]. In this polarized state the overall gap is increased slightly over its value for an
equivalent unpolarized state, but nevertheless the effect of further increase in density is to
continually decrease theoverall gap.

This viewpoint leads to the expectation of an eventual transition to a band-overlap state
(for fixed protons) where, in the single-particle picture, a Fermi surface is established in
the ground state. Of crucial importance is the density (or pressure) at which the gap is
projected to close. The issue is therefore the degree to which current electronic structure
methods are capable of predicting band-gaps, either direct or indirect, for a given structure.
As is well known, the local density approximation (LDA) to the exchange and correlation
contributions to the ground-state energy is on the whole reasonably good, though certainly
improvable (and several gradient correction methods attempt this). However, it performs
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considerably less well for excited states, predictions of band-gaps being a case in point,
and clearly a key one for the present study. For hydrogen the corrections are known to be
considerable, from the work of Chachamet al [14]. The quasi-particle energies in (8) are
in principle determined by the solution of Dyson’s equation:

(T̂ + V̂ )ψnk(r)+
∫
V

dr′ 6(r, r′; εnk)ψnk(r′) = εnkψnk(r) (9)

with 6 the self-energy operator for electrons. An approximation going beyond the LDA
is to follow Hedin’s [15] suggestion and to simply evaluate6 as the leading term in
the Coulomb interaction, itself dynamically screened. This is referred to as theGW -
approximation, and though it is itself an incomplete representation of many-body effects, it
leads to very considerable improvements over the local density approximation. A difficulty
in the practical implementation of this approximation for periodic systems is the necessity
of inverting the dielectric matrix which enters the screened interaction. To circumvent this
(for hydrogen and for other systems), a further development of the extreme tight-binding
method of Sterne and Inkson [16] has been recently introduced [17] which obviates much
of the computational complexity, yet remains accurate (in terms of band-gap corrections) at
the level of about 0.1 eV. The method requires information on the dielectric behaviour of
the system, and in the case of hydrogen this can be taken from experiment [18] and also
from the paper by Chachamet al [14]. For a given choice of structure it is then possible
to systematically correct the LDA gaps for dense hydrogen. Not surprisingly, they are
increased, and quite significantly [13]. Nevertheless, they continue to decline with increase
in density, and for thecmc21 structure vanish atrs ∼ 1.38, to be compared withrs = 1.46
for the LDA. Note, again, that this corresponds to fixed or infinitely massive protons.

With respect to structural selection, pairing forms are consistently found to be
energetically favoured over monatomic phases, persisting to quite high densities including
densities progressing into an eventual band-overlap (semi-metallic) state. Pairs are arranged
in space in a centred orthorhombic cell [7] (thecmc21 structure for phase III), and for the
calculations that we have carried out to date this appears to be significantly more stable than
other competitor structures [17]. This appears to hold true for calculations which invoke a
complete Coulombic electron–proton interaction, and also pseudopotential representations
of it. A detailed description of these calculations is given in reference [17], but it may be
noted that energy cut-offs for plane-wave basis sets, andk-space grids have been chosen
such that total energies are converged at a level of better than 1 meV per proton. As noted,
for incompletely relaxed orthorhombic cells thecmc21 structure is preferred in phase III,
but only by a small amount overc2/m. Figure 3 shows an example of the energy bands for
this structure for bothrs = 1.51 where hydrogen is clearly an insulator, and atrs = 1.45
where band overlap has occurred and a metallic state ensues. It is the gaps in the insulating
phase that are corrected by the modified [17] Sterne–Inkson method.

In an earlier study [12] it was found that a state of spontaneous polarization develops
in the cmc21 structure (now to be associated with the infrared-active phase III), and proton
pairs actually moved off site when the phase II–phase III boundary was crossed at low
temperatures. Large librational motion in this state effectively renders the associated
electronic problem as one corresponding to instantaneous disorder [19]. No long-range
coherence in electron phase can therefore be expected, but instead there can be a consequent
localization by disorder (reinforced by correlation) if the bandwidth is within suitable
bounds. Because of this, a mean-field treatment of interactions, developed through
multipoles connecting phase-decoupled (2e+ 2p) units is a reasonable first step [20]. The
trend in dipolar polarization, in which the long-range energy associated with self-sustaining
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polarization is significant, is also confirmed in the new sequence of calculations, and indeed
is found to continue until the gap closes, and hydrogen passes into a band-overlap state. It
is suggested that this state be identified as a possible phase IV, a semi-metallic phase where
the spontaneous polarization is found to be lost and the preferred structure is nowcmca.
The loss of polarization might be anticipated physically because the presence of free charge
leads immediately to the possibility of screening of the long-range fields which sustain the
insulating polarized state in a self-consistent manner.

Figure 3. Energy bands for dense hydrogen as determined by density functional theory within the
local density approximation and for thecmc21 structure. In (a) the average density corresponds
to rs = 1.51, and in (b) it corresponds tors = 1.45. The dashed lines indicate in each case the
zero-temperature chemical potential (the Fermi energy in the metallic phase).

As noted, proton pairing survives the transition to the metallic phase. To gain some
insight into the observed persistence of proton pairing at high densities, consider the problem
represented by Hamiltonian (6) but focus attention on just two protons (designate their
coordinates byrp1 and rp2 and take their separation to beR = rp1 − rp2). Now let the
charges of all other protons (rpi 6= rp1, rp2) be replaced by a rigid continuum. Since we
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are in a thermodynamic limit, this problem can be represented by the Hamiltonian

Ĥ (R) = Ĥe−
∫
V

dr (ρ̂(1)e (r)− ρ̄)φe(r)−
∫
V

dr (ρ̂(1)(r)− ρ̄)φe(r −R) (10)

where one of the protons can be taken at the origin, and both can be taken as infinitely
massive, as above. The proton separation now becomes a parameter in a largely electronic
Hamiltonian, and the Hellmann–Feynman theorem applies. Stabilization can therefore occur
for fixed ρ̄ as a function of separation at a point where [18]

e2/R2 =
∫
V

dr 〈ρ̂(1)e (r)− ρ̄〉R
(
− ∂

∂R
φc(r −R)

)
. (11)

In (11), an approximate guide to〈ρ̂(1)e (r)〉 and the solution forR can be inferred from the
electron density resulting from a Heitler–London approach when the protons are separated
by R, but the total electron density also includes a constant background density associated
with Ĥe. As with the free molecule, the exchange enhancement of〈ρ̂(1)e (r)〉 in the region
between the protons (the enhancement over the Hartree form) leads to considerable bonding.
Unique to hydrogen is the fact that the interaction entering this stability condition is the full
Coulomb potential (in other systems it will at best be a pseudopotential).

This argument can be extended somewhat by returning to the full Hamiltonian (6) and
again extracting a single proton pair (with separationR) and then proceeding to the change
in the electronic problem that ensues when this pair suffers a change in separationR, all
other protons being held fixed. Once again the Hellmann–Feynman theorem applies and a
stabilization is anticipated, though the condition is more complex than (11) because of the
additional interactions arising from the other and largely more distant protons. But note that
〈ρ̂(1)e (r)〉 also now contains contributions associated with the very same protons, and if these
are aggregated with the corresponding protons the net contribution corresponds to neutral
objects. For this reason, the stabilizing condition is then expected to be not very different
from (11). The existence of a pairing state that is bound overall is clearly conditional on
the neglect of proton dynamics. Within the Born–Oppenheimer separation, the Hellmann–
Feynman theorem can again be applied to the problem within the stipulation that〈ρ̂(1)e (r)〉
represents the electronic density in a fully dynamic context. But aside from the issue of
proton dynamics, the arguments indicating a propinquity towards pairing evidently requires
no especial distinction to be made between metallic and insulating phases.

3. Electronic instability and pairing

The free hydrogen molecule (2e+ 2p) has very significant binding energy against separ-
ation into a pair of hydrogen atoms 2(e+ p). Evidently a pair of protons can be very
effectively bound by a pair of electrons, a pairing that persists with notable tenacity to
very high density (̄ρ/ρ̄0 ∼ 10). Given the evident symmetry of (6) (and its states) under
the interchangeme ↔ mp, it is clear that the question might be inverted; that is, we
may ask instead whether conditions can be found (on density and temperature) where
pairing or indeed other ordering can be induced in the electrons by virtue of the proton
dynamics. In addressing this issue, note that from a crystalline one-electron perspective
the pairing of protons implies that regardless of structure an integral number of bands can
be exactly filled in the ground state; departure from this necessary condition for insulating
behaviour occurs only if the densitȳρ is compatible with band overlap. A recent parallel
here is the even-valence element sulphur which, at high pressures, undergoes an insulator-
to-metal transition, with the metallic phase immediately exhibiting superconductivity (with a
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transition temperature of some 10.1 K, but rising with further increase in pressure [21]). The
Raman effect [22] shows that characteristic phonon frequencies are not exceptional, being
in the range 400–500 cm−1. The metallic phase of sulphur is of the band-overlap type,
as is being argued for hydrogen. However, for hydrogen the corresponding frequencies
are∼4000 cm−1 for optic modes and 1600 cm−1 for acoustic modes (and characteristic
densities of states for the electronic structure can be considerably higher).

Of particular interest in both systems is the role of effective electron–electron interactions
in the common multiband (and specifically electron–hole) context. For it has been shown
[23] that even in the absence of exchange bosons, correlated charge fluctuations between
electrons and holes can lead to weakening of the net electron–electron interaction over what
is expected from the screening arising from each band separately. The principal physical
effects of this are twofold: first, in the complete absence of intermediaries (phonons or other
exchange bosons) pairing ground states can be preferred, the ensuing transition temperature
then depending on the electron and hole masses and densities, as is expected. Second,
subsequent inclusion of proton dynamics through harmonic phonons (with frequency scales
as above, and with large electron–phonon coupling) then leads in the paired metallic phase
of hydrogen to very significant transition temperatures. Accordingly in phase IV of figure 2,
where it appears as noted that energetically thecmca class of structure is preferred, then
because of the primarily electron–hole character of the ensuing band-overlap state, pairing
of electrons is also expected. The reason for this can be found from examination of the
Eliashberg equation for the pairing function8`(k, iωn) of `-wave superconducting order,
namely

8`(k, iωn) = −kBT
∑
n′

∫ ∞
0

dk′ K`(k, iωn; k′, iω′n)8`(k
′, iωn′). (12)

In (12) the kernel is

K`(k, iωn; k′, iωn′) = k′

4π2k
|G(k′, iωn′)|2

∫ k+k′

|k−k′|
dq P`

(
k2+ k′2− q2

2kk′

)
qVeff(q, iωn − iωn′)

(13)

whereVeff(q, iω) is the irreducible electron–electron interaction. Ifvq is the bare Coulomb
interaction, then in the band-overlap context appropriate to phase IV, the effective electron–
electron interaction in theabsenceof phonons is

Veff = vq +
v2
q(1−Gs

11)5
(1)
0

1− vq(Gs
11)5

(1)
0

− α v
2
q(G

a
11)

25
(1)
0

1+ vqGa
115

(1)
0

+ v2
125

(2) (14)

where5(1)
0 is the Lindhard approximation to the density–density response function for

band 1 but modified to include self-energy effects. In (14),α = 3 or −1 for singlet or
triplet pairing,v12 = (1− Gs

12)vq/(1− vq(1− Gs
11)5

(1)
0 ), and5(2) is the density–density

response function for band 2. The form of effective interaction embodied in (14) is an
extension to the electron–hole context of the Kukkonen–Overhauser approximation [24].
The quantitiesGσ(q, iω) are local field factors; the functionG(k, iωn) appearing in (13)
is the Green’s function for fully interacting electrons and is related to the self-energy (see
equation (9)) by

6(k, iωn) = −kBT
∑
νn

∫
dq

(2π)3
G(q, iωn)Vsc(q − k, iνn − iωn).
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The introduction of phonons into this otherwise wholly electron picture is now straight-
forward. It amounts to adding

Vph = −α
(1+ (q/2kF )2)

ω2
q

ω2+ ω2
q

where the phonon frequencies are given byω2
q = βq2/(1+ γ q2). The quantityα can be

fixed by requiring a correct determination of the electron–phonon coupling parameter,β is
determined by the Debye temperature, andγ is fixed by 〈ω〉.

As hydrogen is induced by pressure to enter phase IV (the proposed paired-proton
metallic phase), correlated charge fluctuations arising from the last term in (14) (which is
attractive) are predicted to give rise to electron pairing, even in the absence of phonons
[21]. If phonons are included and a value of 1.5 taken for the electron–phonon coupling
parameter (as suggested by Barbeeet al [25]), then with a valley degeneracy of 2, pairing
can occur first in the electron band, and atrse = 3 the transition temperature is as high
as 300 K. It can rise even further at lower electron band densities, a point that focuses
attention on the one-electron structure, and once again on the details of the average proton
arrangement. Superconductivity is therefore being driven both by phonons and by correlated
charge fluctuations.

4. Emerging physical issues

It is quite clear that a more precise determination of the phase boundaries requires inclusion
of the proton and electron dynamics on an equal footing. This was already evident some
time ago [26], but is all the more apparent now since energy differences between competing
structures are seen to be much smaller than characteristic phonon energies. As noted above,
the issue of electron pairing is also very much dependent on the self-consistent one-electron
bands, and again this is a structural issue. But another interesting issue which is emerging
concerns the nature of the elementary excitations at the point in density (or pressure) where
the self-consistent gap crosses the phonon energy scale. Note that the vibron (or optical
phonon) scale is typically 1/2 eV, with the result that this confluence will occur in phase
III, i.e. preceding the transition to the semi-metallic state predicted on the basis of the
adiabatic approximation. At this point, electron and phonon states will become significantly
mixed, and since away from the confluence both are involved in the balance of energies
determining the overall structure, we are led to expect further phase structure to occur before
phase IV is reached (possibly of polaronic character). Perhaps the most important point to
emerge now is the evident necessity to approach the issue of the electronic structure in dense
hydrogen from a perspective that goes beyond the local density approximation to density
functional theory. In what has been discussed above, it is the gap structure only that has
been corrected. From the significant shifts seen, it is clear that aGW -procedure for the
entire energetic problem is now called for. However, within the LDA it appears that phase
IV may be fairly restricted in its domain, for the calculations are already suggesting that
a transition to a monatomic phase may occur at pressures typified by 400 GPa (withβ-Sn
and Cs-IV being competitive candidates).
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